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Abstract  

A representation (called the U-representation) which remains unitary for all spins and 
for all ranges of velocities was obtained by us in a recent paper. We obtain here relevant 
expressions for the boosts operator and the observables in such a representation. 

I. Introduction 

Relativistic wave equations in the Schr6dinger form, involving a 2(2s + 1) 
component wave function to describe particles and anti-particles o f  spin s, 
have received considerable attention in recent years (Weaver et al., 1964; 
Mathews, 1966b; Mathews, I967). The wave function is required to transform 
according to the D (0, s) + D (s, 0) representation of  the homogeneous Lorentz 
group. Since the wave function has just the minimum number of  components, 
no auxiliary conditions are needed. A remarkable and interesting feature of  
this formalism is that the requirement o f  manifest covariance, which for many 
years played a dominant role in the investigation o f  higher spins, was com- 
pletely abandoned here. It was Foldy who first suggested that the manifest 
covariance is really a luxury and the relativistic invariance of  a wave equation 
can be ensured by requiring the solutions o f  the wave equation to provide a 
representation space for the generators o f  the Poincar~ group. The wave 
function which one employs to provide such a representation is not  unique, 
but has many forms, all interrelated by similarity transformations. Accordingly 
we have, broadly speaking, three different representations, called the if- 
representation (Mathews, 1966a), the Foldy & Wouthuysen (1950, 1966) 
representation and the E-representation (Cini & Touschek, 1958; Alagar 
Ramanujam, 1973). Except for the Foldy-Wouthuysen representation, which 
is applicable to particles with velocities in the low momentum limit, the other 
two representations, as one can see, are not unitary for spins greater than 1 
In a recent paper (Alagar Ramanujam, 1974) a unitary representation (U- 
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representation) which remains unitary for all spins and for all ranges of 
velocity was obtained. The advantage of having a unitary representation is 
that in such a representation the Lorentz invariant scalar product takes the 
usual simple form and the expressions for momentum and charge density 
become much simpler when we go the q-number theory. In this paper we 
complete the work initiated by Alagar Ramanujam (1974) by determining 
relevant expressions for the boosts operator and the abservables in the U- 
representation. 

2. The Unitary Representation 

We give below, for the sake of easy reference, the salient features of the 
U-representation. Assuming the energy sign operator (HR/ER) of a particle 
in its rest frame to be p i the corresponding operator (Hu/E) in the U- 
representation is obtained by a similarity transformation of the form 

H u / E = F - I p I F  (2.1) 

where 

s s 
F=exp{plXpO} = ~ BacosozO+p 1 ~ CasinaO (2.2) 

0 o r {  0 or½ 

cos ~0 = 
cosh aw sinh aw 

sin aO - • tanh w = PIE 
V/(cosh 2aw)' ~/(cosh 2aw) '  

F -1 = F t = e x p  - ( P l • p O )  = ]~ c o s  o~OB a - P l  ~ s i n  aOCa 

The U-representation Hamiltonian (Hu) obtained from (2.1) is of the form 

$ 
Hu = {exp(-2plXpO)}pIE = ~ {Etanh 2awC~ +piE sech 2awBa} 

o or~ (2.3) 

Here, s(sl, sz, s3) is a (2s + 1) dimensional spin matrix and Pl, P3 are Pauli's 
first and third matrices, whose elements are taken as (2s + 1) dimensional 
matrices rather than just numbers. Ba and Ca are even and odd combinations 
of the projection operator A~ to the eigenvatue a of Xp = (X. p)/p 

BaB~ = CaC~ = 6~Ba (2.4) 

CaB~ = 6 a~ Ca, Z Ba = I (2.4a) 

An operator F links the rest frame wave function fin and the U-representation 
wave ffmction flu by the form f i r  = F~u. It may also be noted that the wave 
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function $u and the S-representation (also called the D-representation)wave 
function ~ are linked by the form ~ =A$u, where 

(+) (-) 
A = R-1F = {~ d~B~ + Pl ~ d~C~}F (2.5) 

(+-) 
d~ = • (1/2) x/(m/E)m-~(E + p)-~ {(E + p)2~ + m2,~} 

The U-Representation Operators 
For every infinitesimal generator G~ of the Poincar6 group acting on if, 

there is a corresponding generator Gu acting on flu, the latter being related 
to the former by a similarity transformation of the form Gu = A-1G~A. The 
operator P = p = - i  V generating translation, and the operator J = (x x p) + S 
generating rotation, commute with A and, as a result, they undergo no change 
when we go from the if-representation to the U-representation. But the case 
is not so simple when we come to the boosts operator K = -i8/3v, which 
generates the Lorentz transformation. To obtain Ku one has to actually 
evaluate the form 

Ku = A - 1  Kg, A (2.6) 

with 

K~v = tp -- xH~v + iX 

where H ,  = Hu = A-1H,  A. 
A direct evaluation of the right-hand side of equation (2.6) becomes very 

involved and tedious. We therefore give below a roundabout but less tedious 
method. In this connection it may be noted that any vector B can be expressed 
in the form 

B = [(B . p ) p  - (B x p) x p ] /p2  (2 .7)  

To obtain Ku. p, we take the dot product of the relation given in equation 
(2.6) and by using the commutation relations like (Mathews, 1966a) 

dka 
- i p .  [x, £k~Ca] = £p -~p Ca 

- i p .  [x, NbaBc~] = Np dd@ Bc~ 

we obtain 

i(X. p)(PlHu) 2 + i(X. p) 4 ip2Hu 
(Ku. p) = tp 2 - (x.  p)Hu 4 2E 2 2 2E 2 (2.8) 

To obtain (Ku xp) x p, we make use of the relation (Mathews, 1966b) 

E (J.  p)p (K,  x p)H¢ 
~ = l  + 

m m(E+m) Em 
(2.9) 
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21 is the spin operator in the $-representation. By post-multiplying relation 
(2.9) by H , ,  taking the cross-product of both sides by p and making a 
similarity transformation with A, we get 

(+) (+) 
(Ku x p) x p = - {ac~plBc~ + do~Ca}p3p3c - (J x p)Hu 

(-) (-~ 
+ {d~B~ - "a~plCc~}ip2c x p (2.10) 

(~) = - (E/2p2~/(cosh  2w))[X/(sech 2(c~ - 1)w) +- x/(sech 2(c~ + 1)w)] 

= + sinh 2awaa z~ cosh 2 a w .  tanla wa~; c = 
P 

Combining (2.10), (2.8) and (2.7) we get 

" iHup ip~p(plHu) 2 + ip~p 
Ku = tp - x t I  u ~ 2pER 2p 2E 2 

(+) (-) 
+ p3eHu + a~pap3pBo~c + ia~piCa(c x p) 

P 

(+) (-) 
+ dap3PCac - idaB~(e x p) (2.11) 

Here, and in the following summation over the repeated index is understood. 
For an integer spin s (Mathews, 1966a) 

.o 
1-i-r ̂ p - p X~ - - / f l  

(2.12) 
For a half-odd integer spin s, 

f i , ~ 2 _ p 2  . s . 2  .2 
Ba 

[a, Is = s(s - 1), (s - 2) . . . . .  0 or ½] 

For spins ½ and 1, (2.1 I) reduces respectively to 

Ku = tp - xHu + iX 

(2.13) 

(2.14) 

Ku = tp - xHu + iPXp(plHu)2 + i[XpE2p + p2Hu] p + P3xHu 
2pE 2 2p2E 2 p 

m [t?t~;~ - i X -  p3Xp x - E o  lp3 ' r /p  ] - 

+ x / ( P :  + E2)  
(2.15) 
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For the operator Ku to be Hermitian, we require Ku t = Ku, which in turn 
leads to the condition 

xHu - Hux  = ~ E  2 {Xp(pIHu) 2 + (HuPl)2Xp} + iXpp/p 
p• 

+ {PaxHu - Hu~pa}/P + ipHu/E 2 (2.16) 

Using the commutation relations developed by Seetharaman et al. (1971), we 
get 

xau - a . x  
= i(ba + 1 - ba_ 1)P 1CeX/2p - i(b~+ I + b a -  1 - 2b~)p 1B~ip 3x/2p 

f 2p db~t P -ita(bc~+1, - b c ~ - l ) -  --~-p j ~B~p/2p 2 + i ( k ~ + ~ - k ~ _ O B ~ X / 2 p  

x Cap/2p 2 (2.17) 

Coming to the right-hand side of equation (2.16), we have 

ip [Xp(p 1Hu) 2 + (Hup 1)2~,p] 
2pE2 ÷ i'hpp/p 

= - i2p 1 ak~b~Bap/P E2 + 2 iab~  C~p/pE 2 (2.18) 

(p3"rHu --Hu'rP3)/p 

= P lP3(ba+ 1 + b=_ 1 - 2bc~)Bax/2p - ip la(ba+ 1 - b~_ OBap/2p 2 

+ iol  (b~+ 1 - b~_  I )C~X/2p + i(tc~+ ~ - k ~ _  1)B~X/2p 
- (2ka - ka+ 1 - k~_  i)C~p3"~/2 p - ia(kc~+ t - k s -  1)Cc~p/2p 2 

k s = E tanh 2aw; be, = E sech 2aw (2.19) 

By using (2,18), (2.19) and (2.17), one can easily verify the equality of 
both sides of relation (2.16) and that ensures the Hermitian property of the 
operators Ku. 

3. Observables in the U-Representation 

In the rest frame, where the particle is described by the wave function fiR, 
the Lorentz invariant inner product is defined as (fiR, f iR) = f qJ~ f ir  d3x. 

The author expresses his sincere thanks to Mr. K. Mailsamy and Mr. V. Krishnaswamy 
for their kind assistance in evaluating the expression for the boosts operator K u. 
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With respect to this inner product, the expectation value of the position or 
the spin of the particle is defined as 

spOi /= (3.1) 

where x and S are the position and spin operators in the rest frame. Similar 
expressions can be obtained in the U-representation by replacing fR by F l u .  
Accordingly, we have 

(flu, f u )  = f ~ tuFtFfudax  = f f t u f u d a x  (3.2) 

sp Or / =  

This shows that in the U-representation, the position operator Xu and the 
spin operator Su are, respectively, equal to F'txF and FtSF.  t~y Virtue of 
relation (2.2) we obtain 

X u = F t x F  = x - ip Xppl [HuPl + PIHu] - p~''~ 
2pE 2 p 

_(+) (-)  
- [a,~paPaB~X + iac~p 1Co;v] x pHu/mE 

(-) (+) 
+ [idaBc;~ - dc~paCc~X] x p t lu /mE (3.4) 

(S. p)p + _(+) (-) 
Su =F-1SF=  p2 [aaPlpaBaX+iao~plCo~x 

(+) (-) 
+ dc~oaCc~X - idaBc/v ] x pHu/mE (3.5) 

For spins ½ and 1, equation (3.4) reduces to 

Xu = x ipXPPl [p~Hu + HuPl] Pa"r + PlPa'VHu (3.6) 
2pE 2 - p pE  

ip~pPl [PlHu + HuPl] p3'v 
Xu = x - 2pEZ P 

+ [ i X -  iXp2X + p3XpX + p tpaEx/PlHu{Ex , /p2  +E2)} -1 (3.7) 

and equation (3.5) reduces to $ 

$ The relations (3.8) and (3.6) agree with the corresponding ones given in Mathews 
(1966b). 
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Su = (S.p)p pxp3(x x p)Hu (3.8) 
p2 pE 

(S. p)p pHu 
Su - p2 + {i~p2~k - i ~ -  p3p3~p~ - plP3E~r/p) x EN/(p2 +E2) 

(3.9) 

The invariance of the inner product given in (3.2) can be established as follows. 
After an infinitesimal Lorentz transformation, the inner product given in (3.2) 
takes the form, 

' f ~t,'t,t,' d 3 x  (3.10) (~, ¢~) = j ~ .  ~ u  

where 

the transformed wave function ~u is related to ~O u by the relation 

~u : q + iKu. dv)¢u (3.1 t) 

where dv is the parameter characterising the infinitesimal Lorentz transforma- 
tion. From (3.10) and (3.11) we have: 

(¢u, ~u) = f ~tu(I- iKtu.dv)(I + iKu. dv)~ud3x 

-- f 

since K~ = K u. 

4. The Extreme Relativistic Limit o f  the U-Representation 

A wave equation, appropriate for the description of particles with extreme 
relativistic velocities (the E-representation), was first obtained by Cini and 
Touschek (1958) by suitably projecting the Dirac representation to such 
relativistic limits. The method given by them was recently generalised for 
arbitrary spin (Alagar Ramanujam, t973). The E-representation given in this 
section, unlike the one given by Alagar Ramanujam (1973), remains unitary 
for all spins. 

The rest frame wave function ~b R and the E-representation wave function 
¢~ are related by the form (Alagar Ramanujam, 1974). 

G=[~22]( I+pl~Ca)  (4.1) 

where t is a 2(2s + 1) dimensional unit operator. The wave function ~ f  and 
~b are linked by the relation, 

= A' ¢ue (4.2) 
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where 
A'  = R - I G  

The Hamiltonian (Hu E) of this representation takes the form (Alagar 
Ramanujam, 1974) 

Hu E = EEC~ (4.3) 

Now, one can repeat the procedure given in the Sections 2 and 3 and obtain 
the following expressions for the boosts operator Ku E, the inner product 
($u E, $uE), position operator Xu E and the spin operator S E ,  relevant for 
this representation. 

K E =  tp  - x H  E - (mPa + mCvo)[PsBvoX + ivoBvop/p - iCvoX] 

+ p3p~HuE/E(E + m) + 2pI-IuE/2E2; Vo = 0 or ½ (4.4) 

, = d3x (4.5) 

X f  = x - (01 + CVo)[P3Go X+ iBvo x] x p/2p 2 (4.6) 

Su E = S + (P3Pl - P 3 C V o ) [ C v °  ]k + ipsBvoC - voBvop/p]/2 (4.7) 

For spin ½, equations (4.4), (4.6) and (4.7) reduce to 
mpl  

Ku E = t o - xHu E + i(E/p) X -  i (m2/p3E)(X.p)p  - p----~(S x p) (4.8) 

Xu E = x + iPlk/p  - iPlkpp/p 2 - psx /p  (4.9) 

S f = (S. p)p/p2 _ i p l ,  (4.10) 

The relations (4.8), (4.9) and (4.10) agree with the corresponding ones given 
in Atagar Ramanujam (1973). 

5. Discussion 

Now that all the operators relevant to the unitary representation have been 
determined, the next step will be to consider its second quantisation. The 
quantisation technique developed by Mathews (1967) can be simply borrowed 
and applied here. Preliminary work in this direction shows that the Hamiltonian 
(Hu) could lead to a satisfactory quantisation theory consistent with the 
microcausability condition only in the case of half-odd integer spins, but not 
in the case of integer spins. This means that the problem of determining a 
suitable Hamiltonian in the unitary representation which could be quantised 
consistently with the microcausality condition for integer spins, is to be 
investigated. The work related to this particular matter will be reported in a 
future publication. 
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